ISSN  0890-5487 CN 32-1441/P

2014 Vol.(2)

Display Mode:          |     

Dynamics of Large-Truncated Mooring Systems Coupled with A Catenary Moored Semi-Submersible
XU Sheng, JI Chun-yan
2014, (2): 149-162.
[Abstract](1083)
Abstract:
With the floating structures pushing their activities to the ultra-deep water, model tests have presented a challenge due to the limitation of the existing wave basins. Therefore, the concept of truncated mooring system is implemented to replace the full depth mooring system in the model tests, which aims to have the same dynamic responses as the full depth system. The truncated mooring system plays such a significant role that extra attention should be paid to the mooring systems with large truncation factor. Three different types of large truncation factor mooring system are being employed in the simulations, including the homogenously truncated mooring system, non-homogenously truncated mooring system and simplified truncated mooring system. A catenary moored semi-submersible operating at 1000 m water depth is presented. In addition, truncated mooring systems are proposed at the truncated water depth of 200 m. In order to explore the applicability of these truncated mooring systems, numerical simulations of the platform’s surge free decay interacting with three different styles of truncated mooring systems are studied in calm water. Furthermore, the mooring-induced damping of the truncated mooring systems is simulated in the regular wave. Finally, the platform motion responses and mooring line dynamics are simulated in irregular wave. All these simulations are implemented by employing full time domain coupled dynamic analysis, and the results are compared with those of the full depth simulations in the same cases. The results show that the mooring-induced damping plays a significant role in platform motion responses, and all truncated mooring systems are suitable for model tests with appropriate truncated mooring line diameters. However, a large diameter is needed for simplified truncated mooring lines. The suggestions are given to the selection of truncated mooring system for different situations as well as to the truncated mooring design criteria.
Numerical Analysis and Centrifuge Modeling of Shallow Foundations
LUO Qiang, LUAN Mao-tian, YANG Yun-ming, WANG Zhong-tao, ZHAO Shou-zheng
2014, (2): 163-180.
[Abstract](944)
Abstract:
The influence of non-coaxial constitutive model on predictions of dense sand behavior is investigated in this paper. The non-coaxial model with strain softening plasticity is applied into finite-element program ABAQUS, which is first used to predict the stress-strain behavior and the non-coaxial characteristic between the orientations of the principal stress and principal plastic strain rate in simple shear tests. The model is also used to predict load settlement responses and bearing capacity factors of shallow foundations. A series of centrifuge tests for shallow foundations on saturated dense sand are performed under drained conditions and the test results are compared with the corresponding numerical results. Various footing dimensions, depths of embedment, and footing shapes are considered in these tests. In view of the load settlement relationships, the stiffness of the load-displacement curves is significantly affected by the non-coaxial model compared with those predicted by the coaxial model, and a lower value of non-coaxial modulus gives a softer response. Considering the soil behavior at failure, the coaxial model predictions of bearing capacity factors are more advanced than those of centrifuge test results and the non-coaxial model results; besides, the non-coaxial model gives better predictions. The non-coaxial model predictions are closer to those of the centrifuge results when a proper non-coaxial plastic modulus is chosen.
Laboratory Research on Effective Test Area of Short-Crested Waves Generated by Two-Sided Segmented Wavemakers
LI Jun, CHEN Gang, YANG Jian-min, PENG Tao
2014, (2): 181-192.
[Abstract](844)
Abstract:
The size and shape of the effective test area are crucial to consider when short-crested waves are created by segmented wavemakers. The range of the effective test area of short-crested waves simulated by two-sided segmented wavemakers is analyzed in this paper. The experimental investigation on the wave field distribution of short-crested waves generated by two-sided segmented wavemakers is conducted by using an array of wave gauges. Wave spectra and directional spreading function are analyzed and the results show that when the main direction is at a certain angle with the normal line of wave generators, the wave field of 3D short-crested waves generated by two-sided segmented wavemakers has good spatial uniformity within the model test area. The effective test area can provide good wave environments for seakeeping model tests of various ocean engineering structures in the deep ocean engineering basin.
Analysis of Energy Characteristics in the Process of Freak Wave Generation
HU Jin-peng, ZHANG Yun-hong
2014, (2): 193-205.
[Abstract](797)
Abstract:
The energy characteristics in the evolution of the wave train are investigated to understand the inherent cause of the freak wave generation. The Morlet wavelet spectrum method is employed to analyze the numerical, laboratory and field evolution data of this generation process. Their energy distributions and variations are discussed with consideration of corresponding surface elevations. Through comparing the energy characteristics of three cases, it is shown that the freak wave generation depends not only on the continuous transfer of wave train energy to a certain region where finally the maximum energy occurs, but also on the distinct shift of the converged energy to high-frequency components in a very short time. And the typical energy characteristics of freak waves are also given.
Risk Assessment on A Pipeline Passing Through A Ship Mooring Area
YAN Shu-wang, HUO Zhi-liang, SUN Li-qiuang, LIU Run
2014, (2): 207-214.
[Abstract](847)
Abstract:
It is very common that a submarine pipeline has to pass through a ship mooring area near a harbor zone in the Bohai Bay, China. The risk assessment of accidental events induced by the potential anchoring ships is carried out, which will lead to external interference with the pipeline. A procedure to calculate the probability for the anchoring activity in the ship mooring area to damage the underlying pipeline is proposed. The adopted methodology is based on the recommendations suggested by the DNV Codes. The same philosophy is also applied to estimate the damage probability that is concerned with sinking ships.
Dynamic Analysis of Hydrodynamic Behavior of A Flatfish Cage System Under Wave Conditions
CUI Yong, GUAN Chang-tao, WAN Rong, HUANG Bin, LI Jiao
2014, (2): 215-226.
[Abstract](888)
Abstract:
This paper presents a simulation model based on the finite element method. The method is used to analyze the motion response and mooring line tension of the flatfish cage system in waves. The cage system consists of top frames, netting, mooring lines, bottom frames, and floats. A series of scaled physical model tests in regular waves are conducted to verify the numerical model. The comparison results show that the simulated and the experimental results agree well under the wave conditions, and the maximum pitch of the bottom frame with two orientations is about 12o. The motion process of the whole cage system in the wave can be described with the computer visualized technology. Then, the mooring line tensions and the motion of the bottom frame with three kinds of weight are calculated under different wave conditions. According to the numerical results, the differences in mooring line tensions of flatfish cages with three weight modes are indistinct. The maximum pitch of the bottom frame decreases with the increase of the bottom weight.
A Bingham-Plastic Model for Fluid Mud Transport Under Waves and Currents
LIU Chun-rong, WU Bo, HUHE Ao-de
2014, (2): 227-238.
[Abstract](851)
Abstract:
Simplified equations of fluid mud motion, which is described as Bingham-Plastic model under waves and currents, are presented by order analysis. The simplified equations are non-linear ordinary differential equations which are solved by hybrid numerical-analytical technique. As the computational cost is very low, the effects of wave current parameters and fluid mud properties on the transportation velocity of the fluid mud are studied systematically. It is found that the fluid mud can move toward one direction even if the shear stress acting on the fluid mud bed is much smaller than the fluid mud yield stress under the condition of wave and current coexistence. Experiments of the fluid mud motion under current with fluctuation water surface are carried out. The fluid mud transportation velocity predicted by the presented mathematical model can roughly match that measured in experiments.
Optimum Design and Global Analysis of Flexible Jumper for An Innovative Subsurface Production System in Ultra-Deep Water
HUANG Yi, ZHEN Xing-wei, ZHANG Qi, WANG Wen-hua
2014, (2): 239-247.
[Abstract](721)
Abstract:
The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in ultra-deep water for offshore petroleum production. The paper presents analytical and numerical approaches for the optimum design and global analysis of the flexible jumper. Criteria using catenary concept are developed to define the critical length for optimum design. Based on the criteria, detailed hydrodynamic analyses including quasi-static analysis, modal analysis, and dynamic analysis are performed. Modal analysis with respect to the quasi-static analysis shows that the existence of resonant modes requires special consideration. The results of dynamic analysis confirm the effectiveness of the de-coupled effect from the jumper on STLP system. The approaches developed in the study also have wide application prospect in reference to the optimum design and analysis of any Hybrid Riser (HR) concept.
Behavior of Unbonded Flexible Risers Subject to Axial Tension
REN Shao-fei, TANG Wen-yong, GUO Jin-ting
2014, (2): 249-258.
[Abstract](1058)
Abstract:
Owing to nonlinear contact problems with slip and friction, a lot of limiting assumptions are made when developing analytical models to simulate the behavior of an unbonded flexible riser. Meanwhile, in order to avoid convergence problems and excessive calculating time associated with running the detailed finite element (FE) model of an unbonded flexible riser, interlocked carcass and zeta layers with complicated cross section shapes are replaced by simple geometrical shapes (e.g. hollow cylindrical shell) with equivalent orthotropic materials. But the simplified model does not imply the stresses equivalence of these two layers. To solve these problems, based on ABAQUS/Explicit, a numerical method that is suitable for the detailed FE model is proposed. In consideration of interaction among all component layers, the axial stiffness of an eight-layer unbonded flexible riser subjected to axial tension is predicted. Compared with analytical and experimental results, it is shown that the proposed numerical method not only has high accuracy but also can substantially reduce the calculating time. In addition, the impact of the lay angle of helical tendons on axial stiffness is discussed.
Tensile Stiffness Analysis on Ocean Dynamic Power Umbilical
TANG Ming-gang, YAN Jun, WANG Ye, YUE Qian-jin
2014, (2): 259-270.
[Abstract](901)
Abstract:
Tensile stiffness of ocean dynamic power umbilical is an important design parameter for functional implementation and structural safety. A column with radial stiffness which is wound by helical steel wires is constructed to predict the tensile stiffness value of umbilicals in the paper. The relationship between the tension and axial deformation is expressed analytically so the radial contraction of the column is achieved in the relationship by use of a simple finite element method. With an agreement between the theoretical prediction and the tension test results, the method is proved to be simple and efficient for the estimation of tensile stiffness of the ocean dynamic power umbilical.
Numerical Simulation and Experimental Research on Hydrodynamic Performance of Propeller with Varying Shaft Depths
GUO Chun-yu, ZHAO Da-gang, SUN Yu
2014, (2): 271-282.
[Abstract](815)
Abstract:
In order to study hydrodynamic performance of a propeller in the free surface, the numerical simulation and open-water experiments are carried out with varying shaft depths of propeller. The influences of shaft depths of a propeller on thrust and torque coefficient in calm water are mainly studied. Meanwhile, this paper also studies the propeller air-ingestion under special working conditions by experiment and theoretical calculation method, and compares the calculation results and experimental results. The results prove that the theoretical calculation model used in this paper can imitate the propeller air-ingestion successfully. The successful phenomenon simulation provides an essential theoretical basis to understand the physical essence of the propeller air-ingestion.
Design of A Hydraulic Power Take-off System for the Wave Energy Device with An Inverse Pendulum
Subong PARK
2014, (2): 283-292.
[Abstract](984)
Abstract:
This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.

水利部 交通运输部 国家能源局南京水利科学研究院 《中国海洋工程》编辑部 版权所有

Address: 34 Hujuguan, Nanjing 210024, China Pos: 210024 Tel: 025-85829388 E-mail: coe@nhri.cn

Support by Beijing Renhe Information Technology Co. Ltd E-mail: info@rhhz.net

苏ICP备05007122号